
Cancellation of oscillatory behaviours in incommensurate region

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys.: Condens. Matter 19 145210

(http://iopscience.iop.org/0953-8984/19/14/145210)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 28/05/2010 at 17:24

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/19/14
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 19 (2007) 145210 (6pp) doi:10.1088/0953-8984/19/14/145210

Cancellation of oscillatory behaviours in
incommensurate region

Takahiro Murashima and Kiyohide Nomura

Department of Physics, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka-city, 812-8581,
Japan

E-mail: murasima@stat.phys.kyushu-u.ac.jp and knomura@stat.phys.kyushu-u.ac.jp

Received 30 June 2006, in final form 30 August 2006
Published 23 March 2007
Online at stacks.iop.org/JPhysCM/19/145210

Abstract
In several frustrated systems, incommensurate behaviours are often observed.
For the S = 1 bilinear–biquadratic model, we show that the main oscillatory
behaviour, which is proportional to the free edge spins, is eliminated in the
incommensurate subphase, considering the average of triplet and singlet energy
spectra under open boundary conditions. In the same way, the π -mode
oscillation is also removed in the commensurate subphase. Moreover, we find
that higher-order corrections are exponentially decaying from an analysis of
small-size data.

1. Introduction

Commensurate–incommensurate (C–IC) transitions are interesting phenomena in frustrated
quantum spin systems. In Haldane gap systems, incommensurabilities have often been regarded
as troublesome problems and have rarely been discussed in detail until recently. In inelastic
neutron scattering experiments, Xu et al [1] have revealed that a quasi-one-dimensional
oxide, Y2−xCax BaNiO5, has an incommensurate double-peaked structure factor. However,
an analytical interpretation for incommensurabilities has not been clear.

The spin-1 bilinear–biquadratic model,

H =
N∑

i=1

hi , hi = Si · Si+1 + α(Si · Si+1)
2, (1)

which plays the role of a prototype of Y2BaNiO5, has the C–IC change point which
corresponds to the Affleck–Kennedy–Lieb–Tasaki (AKLT) point α = αD = 1/3 [2, 3]. The
AKLT point is solvable and has an energy gap above the valence-bond-solid (VBS) ground
state [4, 5]. The VBS state has recently been getting more attention with reference to quantum
entanglements [6–9].

Analysing the structure factor among the commensurate and incommensurate subphases,
and also the C-IC change point, we have deduced two candidates for the real structure factor

0953-8984/07/145210+06$30.00 © 2007 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/0953-8984/19/14/145210
mailto:murasima@stat.phys.kyushu-u.ac.jp
mailto:knomura@stat.phys.kyushu-u.ac.jp
http://stacks.iop.org/JPhysCM/19/145210


J. Phys.: Condens. Matter 19 (2007) 145210 T Murashima and K Nomura

unifying these two regions and the AKLT point [10, 11]. Following the Sørensen–Affleck
prescription [12], we have constructed Green functions from the candidates, and compared
them with the energy gap obtained numerically under the open boundary conditions [13]. Thus,
we have found that the Green function consists of two elements which have anomalies in the
upper-or lower-half plane.

In this paper we will show that incommensurate oscillatory behaviours in the
incommensurate subphase can be cancelled, using triplet and singlet energy spectra. In the
same way, we can obtain comparable results in the commensurate case. Moreover, we discuss
higher-order corrections considering small-size systems.

2. Short review of singlet–triplet energy gap

The gapped Haldane phase has nonvanishing, nonlocal string order [16] and effectively free
S = 1/2 spins at the ends of open chains [14, 15]. These edge spins bring a low-lying excitation
triplet, which is degenerate with the ground state in the thermodynamic limit [14]. While this
excitation is clearly a boundary effect, it is linked to the bulk behaviour because of the existence
of nonlocal string order [3].

According to Sørensen and Affleck (SA) [12], the effective Hamiltonian can be connected
using the Green function:

Heff = (−1)N S′
L · S′

Rλ2
∫

dq dκ

(2π)2
G(q, κ) exp(iq N)δ(κ), (2)

where S′
L and S′

R are spin-1/2 operators at the ends of chain. Considering the Clebsch–Gordan
coefficient, we obtain singlet and triplet expectation values for edge spins as

〈S|S′
L · S′

R|S〉 = −3/4,

〈T|S′
L · S′

R|T〉 = 1/4,
(3)

where |T〉 = |sT = 1, sz = ±1, 0〉 and |S〉 = |sT = 0, sz = 0〉.1 Thus the energy difference
between the singlet and triplet states can be described with the Green function:

�EST(N) ≡ ET − ES

= (−1)N λ2
∫

dq

2π
G(q, 0) exp(iq N),

(4)

where ET and ES are the triplet and singlet energies, respectively.
Figure 1 shows the energy gap behaviours of the model (1) with different chain lengths.

Increasing the chain length on some fixed α in the commensurate subphase, we see that the
energy gap oscillates between even and odd chains and decreases exponentially fast, while
this behaviour is not simple in the incommensurate subphase. The even–odd oscillation is
modulated by the frustration in the incommensurate subphase.

In our previous study [13], which has been performed to explain these behaviours, we
found

�EST(N) =

⎧
⎪⎨

⎪⎩

(−1)N Ã exp(−m̃ N) sin(
√

d N), (α>1/3)

0, (α = 1/3)

(−1)N Ã exp(−m̃ N) sinh(
√

d N), (α<1/3).

(5)

The parameters, Ã, m̃, and d , depend on α − αD and have been determined with the nonlinear
least-squares fitting method, as shown in [13]. We have found that the C–IC change is

1 S′
i · S′

j = [(S′
i + S′

j )
2 − S′

i
2 − S′

j
2]/2.
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Figure 1. Oscillation of the energy gap of edge states. The energy gaps with different chain lengths
(N = 9, . . . , 13) are plotted as a function of α.

1

α =0.3258

Singlet
Triplet

TS

1/Ν

Ε/
Ν

(a)

-0.66

-0.65

-0.64

-0.63

-0.62

0 0.5 1

α =0.3425

Singlet
Triplet

TS

E
/N

1/N

(b)

-0.7

-0.69

-0.68

-0.67

0 0.5

Figure 2. Cancellation of triplet–singlet energies. Triplet and singlet energy spectra, and the
average of the triplet–singlet energies, are plotted as a function of 1/N for 1 � N � 15 when
(a) α = 0.3258 (commensurate case) and (b) 0.3425 (incommensurate case).

characterized by the following Green function:

G(q, 0) ∼ 1

(q − im̃)2 − d
+ 1

(q + im̃)2 − d
. (6)

3. Average of triplet–singlet energies

Now we define the average of triplet–singlet energies:

ETS ≡ (ES + 3ET)/4. (7)

From equations (2) and (3), we expect that we can eliminate the principal term caused by the
anomalies of the Green function using this average.

Figure 2 shows bare triplet and singlet energies and averages of triplet–singlet energies
plotted as a function of 1/N for (a) α = 0.3258 (commensurate case) and (b) 0.3425
(incommensurate case). We see that the average of triplet–singlet energies on a fixed α varies
linearly with 1/N not only in the incommensurate subphase but also in the commensurate
subphase.

We perform the least-squares fit to the averages of triplet–singlet energies using the
following fitting function:

f (N) = c0 + c1/N. (8)

3
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Figure 3. Finite-size effect in the average of the triplet–singlet energies and a least-squares fitting
line (c0 + c1/N ) are plotted when (a) α = 0.3258 and (b) 0.3425.
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Figure 4. Coefficients (a) c0 and (b) c1 in equation (8) are plotted near the AKLT point. It appears
that c0 ∝ α − αD and c1 ∝ (α − αD)2.

Figure 3 shows the data of triplet–singlet averages and f (N). When (a) α = 0.3258, each
coefficient is obtained as c0 = −0.681 675 81±2×10−9 and c1 = −1.1671×10−4 ±2×10−8

for 8 � N � 15. In the same way, c0 = −0.648 346 5831 ± 2 × 10−10 and c1 =
−1.772 95 × 10−4 ± 2 × 10−9 when (b) α = 0.3425. The average of the triplet–singlet
energies ETS/N seems to behave highly linearly in the small-α region. In fact, we observe
that coefficients of O(1/N2) and O(1/N3) are very small. Hence, we can say that a higher
power of 1/N does not appear.

Figure 4 shows coefficients c0 and c1 in equation (8) obtained with the least-squares fitting.
The second term in equation (8) comes from surface effects. Since the surface effects are caused
by the one-dimensionality, they are different from the effect of edge spins. Additionally, the
surface effects are perfectly zero, namely c1 = 0, at the AKLT point2. Moreover, c1 always
shows a negative value except the AKLT point. We see that the fitting parameters c0 and c1

behave approximately as α − αD and (α − αD)2, respectively.
So far we have excluded data smaller than N = 8, since these data differ from equaton (8).

Then we proceed to study small-size corrections from equation (8). For a rough estimate, we
consider the difference

�y(N) = ETS(N)/N − (c′
0 + c′

1/N) (9)

2 Of course, c0 = −2/3 at the AKLT point.
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Figure 5. (a) The logarithm of |�y| (equation (9)) is plotted against N . The dotted line is drawn
for a guide to the eye. (b) Two different correlation lengths and the ratio ξ ′/ξ are plotted in the
commensurate region.

for small N , although we use c′
0 and c′

1, which are determined from the data of N = 14, 15.
Figure 5(a) shows log(|�y|) for 1 � N � 8 at α = 0.3258 in the commensurate region. Since
the logarithm of �y decreases linearly with N , the difference �y results in �y ∼ exp(−N/ξ ′).
We estimate ξ ′ as shown in figure 5(b), and then we find ξ ′ ∼ ξ/2 (the correlation length ξ is
obtained in the previous study [13]).3

In the incommensurate region, we see the oscillatory behaviour again. We roughly estimate
the wavenumber of this oscillation, and then we find q ′

IC ∼ 2(qIC+π).4 We will show a detailed
calculation in another paper.

4. Summary

We have shown that the principal oscillatory behaviours, which are proportional to S′
L · S′

R,
among the triplet and singlet energy spectra under open boundary conditions cancel out in the
commensurate and incommensurate subphases.

We have found that the energy spectra of singlet and triplet states under open boundary
conditions consist of the bulk, surface, and edge spin energies:

EC/N = B + S/N + 〈C|Heff|C〉, (C = {S, T}) (10)

where B and S are the bulk and surface energies, respectively.
Considering small N , we have found an exponentially decaying correction term, the

correlation length and the incommensurate wavenumber of which differ by a factor of two
from those obtained by the energy gap of edge states. One possibility is that the correction will
be O((S′

L ·S′
R)2). Therefore, we will need to improve the SA theory so as to contain such higher

terms.
We observe similar results for the S = 1 next-nearest-neighbour model. Thus the

cancellation of triplet–singlet energies can be found in general spin gap systems.
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